Sub-Microwatt Analog VLSI Support Vector Machine for Pattern Classification and Sequence Estimation
نویسندگان
چکیده
An analog system-on-chip for kernel-based pattern classification and sequence estimation is presented. State transition probabilities conditioned on input data are generated by an integrated support vector machine. Dot product based kernels and support vector coefficients are implemented in analog programmable floating gate translinear circuits, and probabilities are propagated and normalized using sub-threshold current-mode circuits. A 14-input, 24-state, and 720-support vector forward decoding kernel machine is integrated on a 3mm×3mm chip in 0.5μm CMOS technology. Experiments with the processor trained for speaker verification and phoneme sequence estimation demonstrate real-time recognition accuracy at par with floating-point software, at sub-microwatt power.
منابع مشابه
Design and Implementation of Ultra-Low Power Pattern and Sequence Decoders
A key challenge in embedding pattern recognition intelligence onto ubiquitous sensing and communication interfaces in wireless integrated systems is to balance requirements on precision, complexity and power consumption in VLSI implementation. This dissertation investigates architectures for adaptive pattern recognition and sequence decoding, derived from statistical learning theory and Bayesia...
متن کاملA new classification method based on pairwise SVM for facial age estimation
This paper presents a practical algorithm for facial age estimation from frontal face image. Facial age estimation generally comprises two key steps including age image representation and age estimation. The anthropometric model used in this study includes computation of eighteen craniofacial ratios and a new accurate skin wrinkles analysis in the first step and a pairwise binary support vector...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملCommon Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004